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1. Introduction
Geomorphology is a valuable source of information for 
understanding erosion processes and the activity of major 
faults within drainage systems. Geomorphic indices 
provide quantitative data to interpret landscape processes. 
The interplay between geomorphic indices and active 
tectonics is interconnected. Active tectonics plays a crucial 
role in controlling both uplift rates and river incision (Cox, 
1994; Cowie et al., 2006). The evaluation of geomorphic 
indices in tectonically active basins helps to determine 
the anomalous basin behaviour. Therefore, the analysis of 
geomorphic indices has become a widely used method in 
regions recognized as tectonically active in recent years. 
These indices are commonly utilized to assess the relative 
tectonic activity of drainage basins in various studies (e.g., 
Bull and McFadden, 1977; Rockwell et al., 1985; Silva et al., 
2003; El Hamdouni et al., 2008; Alipoor et al., 2011). As 
technology progresses, the interpretation of geomorphic 
indices, which depict the morphological evolution of a 
region, has evolved using different methods. While in 
most studies the relative tectonic activity of a region is 

commonly interpreted using the arithmetic mean of the 
geomorphic indices (Iat method in El Hamdouni et al., 
2008), this study adopts the analytic hierarchy process 
(AHP). This approach assigns necessary weighting factors 
by means of a preference matrix in which all identified 
relevant criteria are systematically compared (Saaty, 1977; 
Alipoor et al., 2011).

The study area and its environs are situated in south-
western Türkiye, one of the most tectonically active areas 
of the eastern Mediterranean (Figure 1a). This region is 
characterized by various tectonic features, including the 
Aegean back-arc extension regime (McKenzie, 1978; Le 
Pichon and Angelier, 1979; Meulenkamp et al., 1988; Yılmaz 
et al., 2000), the westward tectonic escape of Anatolia 
(McKenzie, 1972), the compressional Western Taurides 
uplift (Aksu et al., 2009, 2014; Hall et al., 2009, 2014), the 
Subduction Transform Edge Propagator (STEP) fault zone 
(Govers and Wortel, 2005; Hall et al., 2014), and the left-
lateral transtensional Burdur-Fethiye Shear Zone (Elitez 
and Yaltırak, 2014a, 2014b, 2016; Elitez et al., 2016; Elitez 
and Yaltırak, 2023). Mostly NE-SW-striking active faults 
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Figure 1. (a) Simplified tectonic map of Türkiye (BFSZ: Burdur-Fethiye Shear Zone, IA: Isparta 
Angle, TEF: Thrace-Eskişehir Fault, NAF: North Anatolian Transform Fault, EAFZ: East Anatolian 
Fault Zone, DSFZ: Dead Sea Fault Zone, RB: Rhodes Basin, GA: Gulf of Antalya, FB: Finike Basin, 
AM: Anaximander Mountain, SEP: Sırrı Erinç Plateau). Yellow rectangle indicates boundary 
of Figure 1b. (b) Regional fault map of south-western Anatolia compiled from Tur et al. (2015). 
Dark-blue region shows the NE-SW extensional domain (MRB: Marmaris-Rhodes Block, MB: 
Menderes Block, BMB: Büyük Menderes Block, UB: Uşak Block, GG: Gediz Graben, BMG: Büyük 
Menderes Graben, GNKG: Gökova-Nisyros-Karpathos Graben). Green region denotes the NNE-
SSW compressional domain (WTB: Western Taurides Block, IA: Isparta Angle, WTTF: Western 
Taurides Thrust Fault). GPS vectors are from Kreemer et al. (2014). PSFZ: Pliny-Strabo Fault Zone, 
GYFZ: Gökova-Yeşilüzümlü Fault Zone, AB: Acıgöl Basin, BB: Burdur Basin, TB: Tefenni Basin, 
EGB: Eğirdir Basin. Yellow dashed lines indicate approximate boundary of the Burdur-Fethiye Shear 
Zone (BFSZ). White line indicates the boundary of the Eşen Basin.
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have developed as a result of the N-S back-arc extension 
regime due to the roll-back of the Hellenic Trench and 
the counter-clockwise rotation of the western segment 
of the Aegean-Anatolian microplate. The Hellenic and 
Cyprus arcs, signifying the convergent boundary between 
the African Plate and Aegean-Anatolian Microplates, 
are connected by a tear in the subducting slab called the 
STEP fault zone (Govers and Wortel, 2005). The Burdur-
Fethiye Shear Zone is the continuation of this STEP fault 
zone to the northeast through the Rhodes Basin and into 
south-western Anatolia (Taymaz and Price, 1992; Barka 
and Reilinger, 1997; Woodside et al., 2000; Huguen et al., 
2001; Zitter et al., 2003; ten Veen, 2004; Aksu et al., 2009; 
Hall et al., 2009, 2014; Yaltırak et al., 2010; Ocakoğlu, 
2012; Elitez and Yaltırak, 2023). The Burdur-Fethiye Shear 
Zone exhibits both northeast-southwest and northwest-
southeast-striking normal and left-lateral oblique normal 
faults, with several basins being delineated by these major 
faults along the zone. The Eşen Basin is located in the 
south-eastern section of the Burdur-Fethiye Shear Zone, 
in a landslide prone region of the Western Taurides 
(Figure 1b). 

This study addresses the lack of neotectonic 
observations in a commonly neglected region, the N-S-
trending Eşen Basin. The focal point is to enhance our 
understanding of multiphase tectonic dynamics, including 
shear, compression, extension, and the evolution of 
drainage basins. The study examines various scales; 
the regional landscape, subbasins, drainage network, 
and sedimentary strata, aiming to conduct a thorough 
examination of the area. Geomorphological analyses were 
conducted to investigate the recent tectonic deformation 
processes and to determine the influence of the tectonic 
settings on the basin. The methodology involves a 
comprehensive analysis using geomorphic indices and 
the analytic hierarchy process (AHP) method. Field data, 
digital elevation model (DEM), geomorphic indices, and 
longitudinal river profiles are used in the assessment. 

2. Geomorphological and geological features
The Eşen Basin is a N-S-trending Neogene basin with 
a length of approximately 65 km and a width of 35 km. 
The asymmetric topographic relief of the basin consists of 
lowlands to highlands ranging from a height of 0 to 2930 
m (Figures 2 and 3a). Two different morphologies can be 
clearly defined in the Eşen Basin: 1) high mountains with 
steeper rivers in the eastern side, and 2) smaller hills with 
short rivers on the western side. The topography of the 
western side of the basin has a lower relief characterised by 
smaller hills and W-E- and NW-SE-trending wide valleys. 
To the east of the basin, the topography includes hills 
with very steep slopes. Broad alluvial plains lie in front 
of these hills. While the elevation decreases dramatically 

from north to south on the western side of the basin, the 
elevation difference is smaller on the eastern side (sections 
E-Eꞌ and F-Fꞌ in Figure 3a). 

The drainage network of the Eşen Basin displays a 
complex dendritic pattern and a main channel, the Eşen 
River, running through the whole basin from north to 
south (Figure 2). It is dominantly characterized by short 
eastward flowing rivers (max. approximately 18 m) and 
longer westward flowing rivers (max. approximately 39 
m). The longitudinal river profiles of the tributaries of 
the Eşen River reveal steeper channels in the eastern side 
of the basin (Figure 3b) cut by major faults. These rivers 
flow over basement rocks on the footwalls of the faults and 
continue over softer rocks on the hanging walls. However, 
in the western side of the basin, the rivers flow generally 
over alluvial deposits of wide valleys (Figure 2). 

The area of gentle topography, dominated by a wide 
drainage system of the Eşen River, lies at the base of 
mountains and is underlain mainly by Neogene sediments 
(Figure 2). The highlands are prevailingly composed of 
the Mesozoic limestones of the basement. The lowlands 
are infilled by Upper Miocene-Lower Pliocene lacustrine 
deposits, indicating the presence of an ancient lake, and 
younger alluvial fan, talus, and alluvial deposits. The 
deltaic plain, on which the Gelemiş village is located, is 
characterised by Quaternary deposits carried by the Eşen 
River (Figure 2). Quaternary talus deposits covering the 
areas along the mountain fronts indicate recent fault 
activity.

The ages of the geological units in the study area 
indicate a broad time period between Palaeozoic and 
Quaternary. The basin is underlain by sedimentary units 
that unconformably overlie the basement rocks (Figure 4). 
These basement rocks are observed in the mountainous 
parts of the basin and consist of Palaeozoic to Paleogene 
Lycian Nappes (Brunn et al., 1970; Graciansky, 1972; 
Önalan, 1979; Ersoy, 1990), Lower Miocene-Eocene 
Yeşilbarak Nappe (Önalan, 1979) and Cretaceous to Lower 
Miocene Beydağları Para-autochthon (Şenel et al., 1989; 
Şenel, 1994, 1997), including ophiolitic mélange, limestone, 
flysch, sedimentary, and volcanic rocks. The younger 
sedimentary units comprise Upper Miocene to recent 
lacustrine marls, limestones, claystones, conglomerates, 
sandstones, alluvial fan deposits, talus deposits, and 
alluvial deposits (Figure 2; Elitez and Yaltırak, 2023). 

The Eşen Basin is characterised by normal and oblique 
faults with left-lateral strike-slip components. These major 
faults indicate momentous geomorphic expressions both 
on the digital elevation model and in the field (Figure 5). 
The faults are identified as normal, oblique, normal fault 
without slickenside, and geomorphologically determined 
faults due to various indicators. The major faults in the 
Eşen Basin were mapped according to the field studies and 
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the significant geomorphological expressions on DEM and 
airborne imagery. The faults are mainly NE-SW- and N-S-
striking faults parallel to the main trend of the Burdur-
Fethiye Shear Zone, or NW-SE- and W-E-striking faults 
parallel to the main trend of the Gökova-Yeşilüzümlü Fault 
Zone (Figure 2). Most of the NW-SE- and W-E-striking 
faults on the northern side of the Eşen Basin are the main 
faults of the Gökova-Yeşilüzümlü Fault Zone. This fault 
zone has been developed within the left-lateral shear zone 
between the southward thrusting of the Western Taurides, 
causing the subsidence of the offshore Rhodes and Finike 
basins (Hall et al., 2009) and the counter-clockwise rotation 
of the Menderes Block due to the back-arc extension of 
the Hellenic Arc (Tur et al., 2015; Elitez et al., 2016). The 
major faults of the Gökova-Yeşilüzümlü Fault Zone are the 
products of the shallow stresses largely reflecting the thrust 
and subsequent uplift of the Western Taurides (Figure 23 
in Hall et al., 2009). 

In the study area, although no striations were 
observed on some of the major faults, their geological 
and geomorphological features are suggestive of normal 
or oblique faulting (Elitez and Yaltırak, 2023). The major 
faults offset the basement rocks in the northern, south-
western, and easternmost parts of the Eşen Basin. In the 
central and southern areas where the Neogene sediments 
are dominant, the major faults locally juxtapose the 
basement rocks against the Neogene lacustrine sediments 
and the Quaternary alluvial deposits (Figures 2 and 4). 

3. Materials and methods
This paper describes the geological and geomorphological 
properties of the Eşen Basin based on both classical and 

recent methods. The geological, rock strength and fault 
maps used as sources have been produced using a database 
by integrating a digital elevation model (DEM), high-
resolution satellite images, multibeam bathymetric map, 
and field studies describing exact formation contacts and 
fault relationships. Although geological mapping is one 
of the most important aspects of geoscience research, 
digital elevation models and satellite images are also 
efficient and effective ways of revealing geomorphological 
features. The interpretation of the tectonic setting of a 
region is greatly facilitated by the integration of classical 
field techniques with digital technologies. In this context, 
a digital elevation model and a geological map of the Eşen 
River Basin at a scale of 1:25,000 were produced. These 
were superimposed on noncommercial Google Earth 
satellite images using the Geographic Information System 
(GIS) software product ESRI ArcGIS Desktop 10.4.1® 
for examining morphotectonic features and calculating 
geomorphic indices. Additionally, some of the numerical 
data such as ksn values and knickpoints were analysed 
using Matlab-based Topo-Toolbox (Schwanghart and 
Scherler, 2014). The 30 m-resolution data collected by the 
Turkish Navy, Department of Navigation, Hydrography 
and Oceanography and the 250 m-resolution EMODNET 
(European Marine Observation and Data Network, Portal 
for Bathymetry; https://www.emodnet-bathymetry.eu/) 
data were integrated to produce a multibeam bathymetric 
map (GeoTIFF) including the coast and nearshore areas. 

In this study, the 101 subbasins were manually 
delineated using a digital elevation model (Figure 6). The 
analysis of the geomorphic indices is useful to validate 
the geomorphic developments related to active tectonics 
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(Bull and McFadden, 1977; Keller and Pinter, 2002). The 
drainage basin asymmetry factor (AF; Hare and Gardner, 
1985; Cox, 1994), transverse topography symmetry factor 
(T; Cox, 1994), basin shape index (Bs; Ramírez-Herrera, 
1998), hypsometric curves and hypsometric integral (HI; 
Strahler, 1952), valley-floor width to valley height ratio 
(Vf; Bull and McFadden, 1977; Bull, 1977, 1978), mountain 
front sinuosity ratio (Smf; Bull and McFadden, 1977; Bull, 
1977, 1978), stream length gradient index (SL; Keller and 

Pinter, 2002), and normalized channel steepness index 
(ksn; Wobus et al., 2006) were used to analyse the relative 
tectonic activity index (Iat; El Hamdouni et al., 2008) 
according to the analytical hierarchy process (AHP) 
method (Saaty, 1977). 
3.1. Drainage basin asymmetry factor (AF)
The drainage basin asymmetry factor (AF) can be used 
to detect tectonic tilting of a drainage basin (Hare and 
Gardner, 1985). AF = 100 × (Ar / At) where Ar is the area 
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Mesozoic limestones and alluvial sediments (Fault 35 in Figure 2; coordinates 36°22′56.52″, 29°19′8.10″E).
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Figure 6. Digital elevation model of the Eşen Basin showing locations of the drainage basins.
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of the drainage to the right of the trunk stream looking 
downstream and At is the total area of the drainage basin 
(Keller and Pinter, 2002). For a stable setting, the AF 
value should equal about 50. This situation represents a 
symmetric basin. The AF value greater than or less than 
50 indicates basin tilting as a result of tectonic activity. 
To describe the asymmetry levels of the drainage basins, 
AFꞌ = |AF-50| equation is used. AFꞌ > 15, AFꞌ = 7–15, and 
AFꞌ < 7 indicate strongly asymmetrical basins, moderately 
asymmetrical basins, and symmetrical basins, respectively 
(El Hamdouni et al., 2008).
3.2. Transverse topography symmetry factor (T) 
The transverse topographic symmetry actor (T) is used 
to evaluate the tilting of a basin due to the presence of 
tectonic activity. T is determined by analysis of the basin 
symmetry vector data, which includes the deflection of the 
river from the midline of the basin (Cox, 1994). T = (Da / 
Dd), where Da is the distance from the river channel to the 
middle of its drainage basin and Dd is the distance from 
the midline of the drainage basin to the basin divide. The T 
factor ranging from 0 to 1 indicates perfectly symmetric to 
asymmetrical basins (Cox, 1994; Keller and Pinter, 2002).
3.3. Basin shape index (Bs)
Basin shape index (Bs) is defined as Bs = Bl / Bw, where Bl 
is the length between the highest point and the mouth of 
a basin and Bw is the width at the widest point of a basin. 
The lower Bs values tend to be circular in shape indicating 
lower tectonic activity. Rapidly uplifted mountain fronts 
generally produce steep and much more elongated basins 
(Bull and McFadden, 1977; Ramírez-Herrera, 1998). Bs 
values are categorized into three classes: high tectonic 
activity with Bs > 1.76, moderate tectonic activity with 
1.11 ≤ Bs ≤ 1.76, and low tectonic activity with Bs < 1.11 
(Sharma et al., 2018).
3.4. Hypsometric curves and hypsometric integral (HI)
Hypsometric curves and hypsometric integral (HI) 
are generally used to evaluate the state of geomorphic 
evolution of a drainage basin (Willgoose and Hancock, 
1998; Guarnieri and Pirrotta, 2008; Pérez-Peña et al., 
2010). The shape of a hypsometric curve (Willgoose and 
Hancock, 1998) is directly associated with the distribution 
of basin area and elevation and can indicate the relative 
age of the basin. While convex shape basins represent 
the young stage, concave and S-shaped curves denote old 
and mature stages, respectively (Hack, 1973). In addition 
to these curves, the hypsometric integral (HI) gives a 
clue about the degree of erosion (Strahler, 1952). High 
values of the hypsometric integral with convex curves are 
possibly related to young tectonic activity and indicate 
severe erosion. Low values with concave curves reflect 
little erosion and old tectonic activity. The formula for Hi 
is defined as; HI = (Hmean – Hmin) / (Hmax – Hmin) 

(Pike and Wilson, 1971). Here, Hmean, Hmin, and Hmax 
are the average, minimum, and maximum elevations of 
the drainage basin, respectively.
3.5. Valley-floor width to valley height ratio (Vf)
The valley-floor width to valley height ratio (Vf) (Bull 
and McFadden, 1977; Bull, 1977, 1978) is another analysis 
showing whether a basin has a V-shaped or a U-shaped 
valley. Vf is calculated as 2Vfw / [(Eld - Esc) + (Erd - 
Esc)]. Here, Vfw is the width of the valley floor, Esc is 
the elevation of the valley floor and Eld and Erd are the 
elevations of the left and right valley divides, respectively. 
If the basin has been strongly uplifted, the Vf values tend 
to be smaller (Vf < 1), resulting a V-shaped valley. High 
values of Vf (Vf > 1) represent relatively low uplift rates 
with U-shaped valleys. Then Vf values are classified into 
three classes: high tectonic activity with Vf < 0.5, moderate 
tectonic activity with 0.5 ≤ Vf ≤ 1 and low tectonic activity 
with Vf > 1 (El Hamdouni et al., 2008).
3.6. Mountain-front sinuosity index (Smf)
Mountain-front sinuosity index (Smf) (Bull and 
McFadden, 1977; Bull, 1977, 1978) signifies the balance 
between erosional forces and tectonic forces. Smf is defined 
as Lmf / Ls, where Lmf is the length of the mountain 
front along the foot of the mountain, at the pronounced 
break of the slope and Ls is the straight-line length of the 
mountain front. On the most tectonically active fronts, 
Smf values approach 1 and may increase to 1.4 (Rockwell 
et al., 1985; Keller, 1986). For slightly active regions, the 
Smf values range between 1.4 and 3. In this study, Smf 
values are classified into high tectonic activity with Smf < 
1.1, moderate tectonic activity with 1.1 ≤ Smf < 1.5, and 
low tectonic activity with Smf ≥ 1.5. (El Hamdouni et al., 
2008).
3.7. Longitudinal river profiles and stream length 
gradient index (SL)
A longitudinal river profile is a cross-sectional pilot 
representing the elevation differences between the 
headwaters and the mouth of a river (Keller and Pinter, 
2002). Longitudinal river profiles with SL index values 
are used to describe the changes and irregularities on 
lithological, structural, and tectonic processes dominating 
the area (Hack, 1973; Bull, 2008). Stream length gradient 
index (SL) indicates the stream power, which is a good 
predictor of channel erosion. The SL index also reflects the 
relationship between tectonic uplift, rock resistance, and 
topography (Keller, 1977; Merritts and Vincent, 1989; Font 
et al., 2010). The index decreases where the river crosses 
the relatively soft rocks and increases on relatively hard 
rocks. If there is an inconsistency, then the SL index may 
represent tectonic activity. SL = (ΔH / ΔL) / L, where ΔH 
is the difference in height between two points, ΔL is the 
difference in length between two points, and L is the total 
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length of the river (Hack 1973). To detect local responses 
to regional processes such as regional uplift (Troiani and 
Della Seta, 2008), both a map of SL distribution along the 
rivers and rock strength levels (ISRM, 1978; Marinos and 
Hoek, 2001) and an SL density map were produced for 
this study. SL density map was generated using the Kernel 
density tool of ArcGIS with a search radius of 1500 m and 
an output cell size of 20 m2.

The longitudinal river profiles with the stream 
length gradient index (SL) values represent the erosion-
sedimentation equilibrium or steady-state position of the 
rivers. Sudden changes in stream slope are defined by SL 
index values and indicate the topographic or lithological 
breaks. 
3.8. Knickpoints and normalized channel steepness 
index (ksn) 
A knickpoint in river systems is characterized as a sharply 
inclined section situated between areas of lower gradient 
along the course of the river (Howard et al., 1994). 
Knickpoints represent distinct changes in the steepness of 
river profiles, and their characteristics and behaviour are 
influenced by both the nature of the perturbation and the 
mechanics of river incision (Kirby and Whipple, 2012). 
They can be caused by a resistant lithology, an increase in 
shear stress, or surface uplift (Bishop et al., 2005). They can 
be observed at lithological boundaries, particularly where 
a harder and more durable layer overlies a softer and more 
erodible layer.

The evaluation of stream profiles in the study area is 
based on Flint’s empirical power-law equation, which 
relates the local slope (S) to the upstream contributing 
drainage basin area (A): S = ksA

- θ, where ks is a channel 
steepness index and θ is the concavity index. ks, as an 
important metric for geomorphological studies, exhibits 
sensitivity to spatial variations in bedrock erodibility, 
climate, and uplift rate. Increased values of ks may be 
associated with abnormal uplift rates or a more general 
decrease in erodibility (Snyder et al., 2000; Kirby and 
Whipple, 2001). The concavity index, θ, is a measure of 
the rate at which the gradient of a river channel decreases 
as it moves downstream. To compare ks within different 
channels, it is common to calculate the steepness index 
with a fixed value of θ. This value is referred to as the 
reference concavity index, θref. Whenever a reference 
concavity index is used, the obtained value of the channel 
steepness index is called ‘normalized’ and is represented 
by ksn with fixed units (Wobus et al., 2006). Recent studies 
(e.g., Snyder et al., 2000; Kirby and Whipple, 2001; Wobus 
et al., 2006) suggest that the steepness index is dependent 
on uplift rate, and also theoretical considerations, in line 
with empirical data, indicate that, under steady-state 
conditions, the θ value is expected to be between 0.4 and 
0.6, with a best-fit value of 0.45 (Tarboton et al., 1989; 

Whipple and Tucker, 1999; Snyder et al., 2000; Kirby and 
Whipple, 2001; Kirby et al., 2003; Lague and Davy, 2003; 
Whipple, 2004; Wobus et al., 2006). Therefore, a reference 
concavity of 0.45, which means that the dimension of ksn is 
m0.9 (m2θ), is used in this study. 

There are two types of knickpoint recognised in the 
literature: vertical-step and slope-break (Wobus et al., 2006; 
Kirby and Whipple, 2012). The vertical-step knickpoints 
suggest no obvious change in ksn values, whereas the 
slope-break knickpoints show upstream and downstream 
segments with different ksn values. Slope-break knickpoints 
are crucial for the interpretation of tectonic activity in 
erosional landscapes (Wobus et al., 2006).

Rivers with higher ksn values reflect higher uplift rates 
in regions with similar climate and rock strength, as well 
as high erosion rates and steep slopes, whereas those with 
lower ksn values characterise the low uplift zone (Synder 
et al., 2000; Wobus et al., 2006; Kirby and Whipple, 2012). 
Locally, ksn values may exhibit knickpoints even in the 
absence of a fault or lithological changes. This scenario 
may suggest a potential tectonic origin (Ouayah et al., 
2021) or be attributed to erosion processes (Kirby and 
Whipple, 2012).
3.9. Relative tectonic activity (Iat) and analytical 
hierarchy process (AHP)
The relative tectonic activity (Iat) is a strong method to 
combine geomorphic indices and reflect the differences in 
the tectonic activity in a region (Keller and Pinter, 2002; 
El Hamdouni et al., 2008). The geomorphic indices are 
averaged (S/n) and divided into four classes: very high 
with 1 ≤ Iat < 1.5 (class 1); high with 1.5 ≤ Iat < 2.0 (class 
2); moderate with 2 ≤ Iat < 2.5 (class 3), and low with 2.5 
≤ Iat (class 4) (El Hamdouni et al., 2008). In this study, Iat 
was analysed according to the analytical hierarchy process 
(AHP) method. The AHP method is used to classify the 
indices based on their intensity of importance: 1 for equal 
importance, 3 for moderate importance, 5 for strong or 
essential importance, 7 for very strong importance, 9 for 
extreme importance, and 2, 4, 6, 8 for intermediate values 
(Saaty, 1977). The Cr coefficient must be ≤0.1. 

4. Results
4.1. Drainage basin asymmetry factor (AF)
To evaluate the tectonic tilting of the Eşen Basin, the 
drainage basin asymmetry factor (AF) values of the 101 
drainage basins were calculated. The calculated AF and AFꞌ 
results are shown in Figure 7a and Table 1. The AF values of 
the drainage basins range from 14.35 to 85.84 and the AFꞌ 
values range from 0.02 to 35.84 (Table 1). Approximately 
35% (35/101) of the AFꞌ results have values of >15 and 
indicate strongly asymmetrical basins. Approximately 27% 
(27/101) of the values ranging between 7 and 15 represent 
moderately asymmetric features, and approximately 39% 
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Figure 7. (a) Drainage basin asymmetry (AFꞌ; White arrows indicate tilting directions.), (b) Transverse 
topography symmetry factor (T), (c) basin shape index (Bs) and (d) stage map based on the hypsometric 
integral values (HI) and hypsometric curves of the 101 drainage basins of the Eşen Basin. 
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Table 1. Morphometric values obtained from 101 drainage basins (AFꞌ: asymmetry level; T: transverse topography symmetry factor; Bs: 
drainage basin asymmetry factor; HI: hypsometric integral; Vfavg: average value of valley-floor width to valley height ratio; σn-1: standard 
deviation of Vfavg values).

Basin no. Total area (m2) AF’ T Bs HI Vfavg σn-1

1 34629769.40 74.51 0.70 1.95 0.39 0.24 0.29
2 30030305.36 69.29 0.22 1.49 0.45 0.38 0.32
3 55774961.91 43.91 0.20 1.39 0.51 0.07 0.03
4 10617674.13 56.95 0.25 2.53 0.47 0.14 0.06
5 1907620.50 46.31 0.27 2.27 0.49 0.55 0.61
6 591478.09 48.79 0.25 2.24 0.56 0.44 0.34
7 1729905.51 27.91 0.51 3.08 0.58 0.33 0.28
8 1793671.21 50.02 0.31 2.82 0.52 0.47 0.06
9 805812.80 58.91 0.47 3.82 0.57 0.69 0.41
10 4769120.69 48.95 0.32 1.46 0.48 0.20 0.12
11 8467032.60 61.30 0.16 1.00 0.47 1.38 2.28
12 4271307.41 31.30 0.55 1.66 0.61 0.33 0.17
13 24751161.77 57.69 0.27 2.34 0.34 1.87 3.09
14 46173938.56 51.59 0.17 2.78 0.35 1.22 0.02
15 16932159.39 23.98 0.58 1.62 0.39 0.19 0.03
16 1435593.29 61.49 0.40 2.28 0.40 1.93 1.97
17 8595035.91 14.35 0.88 2.14 0.25 8.79 0.14
18 3019544.28 38.69 0.09 2.42 0.31 1.92 1.87
19 1353396.45 65.24 0.43 1.91 0.44 0.72 0.00
20 3293114.33 40.07 0.32 3.53 0.38 1.40 0.44
21 5981238.99 34.23 0.07 3.98 0.41 0.94 0.92
22 8845548.22 48.93 0.12 2.35 0.45 2.59 3.35
23 5635379.88 55.82 0.02 3.05 0.33 1.17 0.80
24 51883116.23 85.84 0.73 0.95 0.25 0.35 0.12
25 380970.58 49.09 0.24 3.80 0.62 0.23 0.00
26 432921.92 63.02 0.37 2.12 0.58 0.24 0.00
27 1690035.87 54.93 0.16 2.87 0.46 0.64 0.26
28 6588439.11 43.36 0.31 3.25 0.45 0.40 0.32
29 3892985.62 32.85 0.56 2.07 0.43 0.41 0.08
30 27820179.20 54.12 0.18 1.81 0.41 1.54 2.47
31 35248605.40 58.85 0.33 1.61 0.53 0.27 0.21
32 2431286.32 39.35 0.41 2.38 0.52 0.32 0.23
33 1781858.88 44.41 0.44 5.81 0.50 0.33 0.06
34 846926.05 68.96 0.36 2.02 0.52 0.28 0.00
35 3212060.74 51.57 0.27 4.20 0.50 0.21 0.02
36 10795433.83 53.68 0.50 1.92 0.47 0.38 0.17
37 46950284.98 55.61 0.17 1.30 0.38 2.40 2.74
38 389504.78 44.83 0.18 2.49 0.60 0.27 0.00
39 565077.88 57.08 0.20 0.87 0.57 0.37 0.04
40 352546.77 54.17 0.18 1.67 0.63 0.35 0.06
41 2129858.13 77.95 0.66 1.96 0.63 0.27 0.00
42 276843.67 39.21 0.25 1.81 0.48 0.68 0.56
43 233632.20 52.85 0.07 2.90 0.59 0.73 0.16
44 1308589.46 43.09 0.08 2.37 0.78 0.31 0.21
45 5074331.87 67.03 0.37 1.32 0.57 0.48 0.00
46 25826099.29 51.47 0.28 3.24 0.49 0.65 0.44
47 4314808.96 30.17 0.04 2.35 0.47 0.27 0.12
48 1172882.12 27.49 0.40 1.01 0.60 0.32 0.00
49 747628.28 47.75 0.17 2.05 0.67 0.47 0.00
50 1034646.90 45.93 0.19 1.87 0.68 0.71 0.23
51 1493083.14 57.18 0.17 1.09 0.50 2.59 2.98
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52 639482.72 21.01 0.25 0.92 0.57 0.29 0.00
53 117525.94 51.60 0.00 3.21 0.71 1.82 0.00
54 82983.68 57.62 0.00 4.81 0.80 0.60 0.30
55 83382141.90 35.87 0.42 1.63 0.51 0.39 0.19
56 224141023.84 58.38 0.30 1.49 0.51 0.37 0.72
57 7224274.60 43.23 0.34 2.21 0.39 1.71 0.59
58 1932416.18 44.73 0.77 2.05 0.40 1.20 0.83
59 7389895.21 44.49 0.26 1.93 0.38 0.52 0.10
60 25859285.35 69.59 0.33 2.90 0.35 0.72 0.30
61 18573228.43 64.33 0.51 4.37 0.32 1.48 0.63
62 49429086.60 40.65 0.20 1.78 0.45 0.35 0.10
63 22168079.65 79.42 0.47 3.40 0.48 0.65 0.91
64 7431911.37 50.80 0.57 3.94 0.37 0.95 0.06
65 29941083.06 64.93 0.32 2.91 0.51 0.43 0.25
66 6931818.26 23.62 0.56 3.87 0.43 0.63 0.41
67 5561692.18 31.03 0.51 2.29 0.48 1.31 1.69
68 36119592.48 80.28 0.42 1.70 0.49 0.24 0.29
69 188702436.86 60.37 0.25 0.64 0.41 0.70 0.66
70 16101410.97 64.61 0.31 2.63 0.67 0.22 0.10
71 3822004.56 60.31 0.28 3.60 0.62 0.22 0.07
72 1168565.49 54.47 0.28 5.29 0.59 0.80 0.51
73 491925.23 64.05 0.46 3.51 0.55 0.86 0.00
74 779035.99 22.99 0.72 2.21 0.57 2.68 0.46
75 820436.98 48.90 0.28 3.49 0.53 0.27 0.00
76 921527.67 43.51 0.44 2.49 0.61 0.56 0.00
77 1383600.86 25.28 0.58 2.48 0.53 2.09 2.41
78 386219.98 34.27 0.30 2.20 0.54 0.29 0.00
79 514855.57 52.42 0.30 2.10 0.50 0.24 0.08
80 683690.67 32.49 0.37 2.46 0.68 0.56 0.00
81 427213.17 43.59 0.05 2.83 0.54 0.42 0.00
82 286221.28 45.48 0.13 4.82 0.50 0.45 0.00
83 978862.74 23.54 0.55 1.75 0.68 0.31 0.00
84 1123739.51 34.32 0.41 2.76 0.62 0.98 0.00
85 310364.52 23.33 0.66 2.75 0.52 1.39 0.00
86 2056626.54 42.93 0.38 4.64 0.51 0.24 0.00
87 18697781.87 59.43 0.26 1.19 0.46 0.38 0.21
88 4010647.39 53.77 0.23 2.14 0.56 0.18 0.04
89 152761.56 34.66 0.20 3.24 0.49 0.44 0.00
90 210198.77 16.09 0.08 1.23 0.50 2.14 0.00
91 197243.72 72.80 0.56 1.97 0.45 1.68 0.00
92 1175948.13 27.41 0.36 3.28 0.48 0.76 0.00
93 1005313.48 39.75 0.25 2.70 0.42 0.37 0.00
94 7807680.88 44.84 0.29 2.87 0.46 0.32 0.10
95 12518507.59 36.43 0.20 2.51 0.49 0.15 0.11
96 2687150.43 45.69 0.20 1.58 0.47 0.35 0.23
97 9006621.71 20.34 0.48 2.84 0.36 0.34 0.14
98 23830045.17 36.28 0.46 2.73 0.47 0.25 0.23
99 383536.13 45.22 0.05 2.71 0.74 0.38 0.00
100 597906.97 74.12 0.35 1.39 0.61 0.19 0.00
101 281428.96 30.48 0.29 4.27 0.64 1.71 0.00

Table 1. (Continued.)
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(39/101) of the drainage basins are symmetric (Figure 7a). 
As far as their tilting direction is concerned, 16 drainage 
basins are north-westward tilted, 8 are north-eastward 
tilted, 11 are northward tilted, 16 are south-westward tilted, 
8 are south-eastward tilted, 1 are southward tilted, and 
the remaining 1 is westward tilted. In brief, the drainage 
basins are differentially tilted in different directions due to 
continuous tectonism within the basin (Figure 7a).
4.2 Transverse topography symmetry factor (T) 
4.3. T was calculated at a distance interval of 200 m and 
then an average value was obtained for each drainage 
basin. The average T values are classified into tree classes: 
Class 1 (≥0.5), Class 2 (0.5–0.3), and Class 3 (≤0.3) from 
high to low tectonic activity (Taesiri et al., 2020; Figure 7b). 
The minimum average value of T obtained in the present 
study is 0 for basins 53 and 54, and the maximum mean 
value of T is 0.88 for Basin 17 (Table 1). According to the T 
values, approximately 19% (19/101) of the drainage basins 
indicate strongly asymmetrical basins, approximately 30% 
(30/101) of the T values represent moderately asymmetric 
features, and approximately 52% (52/101) of the drainage 
basins are symmetric (Figure 7b).
4.4. Basin shape index (Bs)
The basin shape indexes of the 101 drainage basins range 
from 0.64 to 5.81 (Table 1). Basin 69 has the lowest 
value of Bs, while basin 33 has the highest value of Bs, 
reflecting higher tectonic activity. Most of the basins have 
an elongated shape indicating tectonic activity. These 
drainage basins are predominantly observed in the central 
part of the Eşen Basin (Figure 7c).
4.5. Hypsometric curves and hypsometric integral (HI)
In this study, based on hypsometric curves and 
hypsometric integral (HI), the drainage basins are divided 
into three stages: old (HI < 0.3), mature (0.3 ≤ HI ≤ 0.5), 
and young (HI > 0.5). The HI values of the drainage basins 
of the Eşen Basin range from 0.25 to 0.80 (Table 1) and 50 
of them indicate the young stage (Figure 7d). The other 
basins reflect relatively long-term erosion. The HI values 
are not directly related to relative tectonic activity, but they 
can provide important clues about the amount of erosion 
and the relative age of landscape (El Hamdouni et al., 
2008). For example, the drainage Basin 69 has moderate 
HI and AF’ values and low Bs and T values, despite the 
low Vf values along three major faults located in and in 
front of this drainage basin (Figure 8a). This is most likely 
due to the rugged Western Taurides with high elevation 
sources of the Eşen River, which generate flash floods after 
intense rainstorms and during snow-melt periods (Aksu 
et al., 2021).
4.6. Valley-floor width to valley height ratio (Vf)
The valley-floor width to valley height ratio (Vf) indices 
were calculated at distances ranging from 100 to 500 m 

according to the size of the drainage basins. Average Vf 
values (Vfavg) were calculated for each drainage basin. 
Vfavg values in the Eşen Basin vary from 0.07 (Basin 3) 
to 8.79 (Basin 17) (Table 1). Higher Vf values suggest 
the existence of U-shaped valleys and indicate relatively 
stable tectonic activity. These drainage basins are 
predominantly located in the central part of the Eşen 
Basin. Conversely, lower Vf values along the major faults 
(Figure 8a) suggest the existence of V-shaped valleys 
with high degrees of tectonic uplift. 
4.7. Mountain-front sinuosity index (Smf)
The mountain front sinuosity index (Smf) is an 
important tectonic indicator of a region. Calculated Smf 
values of 41 mountain front lineaments (Figure 8b) in 
the Eşen Basin vary from 1.0178 to 1.6571 (Table 2). 
Almost all values reflect an effective tectonic activity 
in the region. As in Table 2, the most active front fault 
is Fault 35 with an Smf value of 1.0178 (Figures 5h 
and 8b). Pliocene to Quaternary alluvial fan and talus 
deposits along the foot of the N-S- and NE-SW-striking 
mountain fronts 21, 22, 23, 30, 31, 33, 35, 37, 38, and 39 
indicate recent active tectonics. The W-E and NW-SE-
striking mountain fronts in the northern section of the 
basin have developed in the basement rocks (e.g. 15, 16, 
17, 18). Some of the river channels display left-lateral 
displacements (e.g. 20, 23, 27, 30, 31). Additionally, 
a comparison between Smf values and earthquake 
locations in the whole basin displays compatibility 
(Figure 8b).
4.8. Longitudinal river profiles and stream length 
gradient index (SL)
To identify the factors influencing changes in the SL 
index, a rock strength level map was produced using the 
rock classification (Figure 9a). The strength levels R0, 
R1, R2, R3, R4, R5, and R6 represent extremely weak, 
very weak, weak, medium strong, strong, very strong, 
and extremely strong rocks, respectively (ISRM 1978; 
Marinos and Hoek, 2001). The SL index values for the 
Eşen River and its tributaries range from 0.4 (Basin 12) 
to 17051 (on the footwall of the Ören Fault in Basin 55). 
The analysis reveals that the highest values, signifying 
anomalies, are widely distributed throughout the eastern 
section of the basin (Figure 9). When compared with 
the Vf values, it is noteworthy that the low SL values in 
most of the drainage basins point out wide and flat river 
valleys. The different rock types along the river valleys 
tend to influence the SL index values. In conclusion, 
considering the longitudinal river profiles and the SL 
index values together, it is evident that the majority 
of the SL anomalies are closely associated with major 
faults rather than lithological changes on both sides of 
the Eşen Basin (Figures 9 and 10).
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Figure 8. (a) Digital elevation model of the Eşen Basin showing valley width to valley height ratio (Vf) locations, (b) Digital elevation 
model of the Eşen Basin showing the mountain front numbers, Lmf and Ls lines used for Smf (mountain front sinuosity index) 
calculations and earthquake data points (with depths in km). Earthquake focal mechanism solutions are shown in purple beach balls 
with dates and numbers indicating the depths of earthquakes. Earthquake data from Över et al. (2013) and USGS earthquake catalogue 
(Accessed on 30 November 2023).

Table 2. Values of the Smf (mountain front sinuosity index) in the defined mountain fronts (Lmf: length of the mountain front along the 
foot of the mountain; Ls: straight-line length of the mountain front).

Mountain front no. Lmf Ls Smf Inference
1 4837.1348 3394.1119 1.4252 Moderate tectonic activity
2 6073.1770 5384.5910 1.1279 Moderate tectonic activity
3 2226.9169 2100.7359 1.0601 High tectonic activity
4 1270.9267 1234.2327 1.0297 High tectonic activity
5 1362.7869 1299.3519 1.0488 High tectonic activity
6 3901.0280 3670.2115 1.0629 High tectonic activity
7 1458.4005 1420.9040 1.0264 High tectonic activity
8 2322.8806 2019.5359 1.1502 Moderate tectonic activity
9 2270.8877 2076.3196 1.0937 High tectonic activity
10 2021.5313 1939.6506 1.0422 High tectonic activity
11 2612.3967 2407.4701 1.0851 High tectonic activity
12 2800.0225 2573.4946 1.0880 High tectonic activity
13 1490.8857 1453.1563 1.0260 High tectonic activity
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14 2652.4438 2596.0566 1.0217 High tectonic activity
15 13482.9417 10772.3274 1.2516 Moderate tectonic activity
16 1385.1375 1264.1351 1.0957 High tectonic activity
17 5269.6873 4551.0641 1.1579 Low tectonic activity
18 6136.4516 5856.4291 1.0478 High tectonic activity
19 1551.7422 1467.5704 1.0574 High tectonic activity
20 6112.7125 5280.7270 1.1576 Moderate tectonic activity
21 16329.8260 12803.3440 1.2754 Moderate tectonic activity
22 7201.9943 6347.6549 1.1346 Moderate tectonic activity
23 6724.3215 6020.5008 1.1169 Moderate tectonic activity
24 2752.5244 2623.5278 1.0492 High tectonic activity
25 2333.8473 2203.3061 1.0592 High tectonic activity
26 3159.4555 3025.6041 1.0442 High tectonic activity
27 10914.5296 9739.5137 1.1206 Moderate tectonic activity
28 9246.1896 8306.9364 1.1131 Moderate tectonic activity
29 8901.6728 5371.9649 1.6571 Low tectonic activity
30 4191.8240 2797.2862 1.4985 Moderate tectonic activity
31 6018.2299 4422.8197 1.3607 Moderate tectonic activity
32 7236.7300 6603.0325 1.0960 High tectonic activity
33 8002.0961 6852.1729 1.1678 Moderate tectonic activity
34 5274.0033 4237.3261 1.2447 Moderate tectonic activity
35 746.1343 733.0722 1.0178 High tectonic activity
36 9647.7597 8195.3214 1.1772 Moderate tectonic activity
37 1985.6996 1861.3644 1.0668 High tectonic activity
38 5338.1345 4842.5708 1.1023 Moderate tectonic activity
39 12739.5398 11115.9304 1.1461 Moderate tectonic activity
40 4216.9118 3894.6290 1.0828 High tectonic activity
41 10317.7507 10073.6427 1.0242 High tectonic activity

Table 2. (Continued.)

4.9. Knickpoints and normalized channel steepness 
index (ksn)
The extracted knickpoints in the Eşen Basin have various 
drop heights and are distributed over almost all elevations. 
The numbers of knickpoints from the western and eastern 
sides of the Eşen Basin are 51 and 96, respectively; however, 
they are not observed in the western central parts of the 
basin (Figure 11). The drop heights of the knickpoints 
range from approximately 30 m to 420 m. Smaller drop 
heights are generally distributed in the southwestern, 
northern, and mideastern parts of the basin. The maximum 
knickpoint drop heights are observed on the footwall of a 
geomorphologically determined fault (Figure 11; Fault 22 in 
Figure 2) in the Basin 65 and on the footwall of the Ören 
Fault in the Basin 55 (Figure 11; Fault 11 in Figure 2). 

The obtained normalized channel steepness index (ksn) 
values indicate a wide range between 0 and 891 m0.9 and 
therefore divided into five groups (Figure 11) in order to 
reveal the variation clearly. The highest ksn values are 891 
m0.9 at the Ören Fault in the Basin 55, 617 m0.9 in the Basin 3, 
559 m0.9 in front of the Ören Fault in the Basin 55, 530 m0.9 in 
the Basin 65, and 526 m0.9 in the Basin 68. The distribution 
of ksn values for the major rivers reveals the existence of 
knickpoints along the rivers in the northern, southwestern, 

and eastern parts of the Eşen Basin. In addition, these rivers 
exhibit varying the ksn values (Figure 11).
4.10. Relative tectonic activity (Iat) and analytical 
hierarchy process (AHP)
The pairwise comparison between AFꞌ, T, Bs, Vfavg, HI, 
Smf, SL, and ksn indices was conducted, and a preference 
matrix was generated to produce a relative tectonic activity 
(Iat) map of the Eşen Basin by using ArcGIS AHP 2.0 tool 
(Figure 10; Marinoni, 2004). The map of SL distribution 
and rock strength levels (Figure 9) reveals that the majority 
of the high values of the SL index are within the low 
resistance rocks and along the major faults. Consequently, 
the importance of the SL index outweighs that of the other 
indices in the preference matrix. Due to its substantial 
impact on the tectonic activity of drainage basins, ksn also 
has a higher weight. The HI index is dependent on the 
rock strength as is the SL index, so that the importance 
of the HI index is close to that of the SL index. Smf and 
Vf values are commonly used to calculate uplift rates 
along tectonically active mountain fronts. In the study 
area, valleys are predominantly composed of limestone, 
resulting in a moderate importance of the Vf index in the 
preference matrix. Mountain fronts are generally straight 
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and represent low values. The importance of the Smf 
index can be considerably higher than the other indices. 
However, it is not applicable to all drainage basins, so its 
importance is ranked after the above indices. The Bs index 
can vary depending on various effects such as lithology, 
tectonic setting, and erosion. AFꞌ and T indices display 
similar behaviour. The AFꞌ index can be an indicator of 
asymmetry as a function of lithological controls or local 
climate (Keller and Pinter, 2002). It is particularly effective 
in areas where drainage basins are parallel to the faults. 
Similarly, the T index can be influenced by lithology and 
topographic factors. Consequently, both AFꞌ and T take 
the lowest values in the matrix (Figure 12).

According to the AHP method, approximately 52.8% 
of the Eşen Basin (approximately 713.5 km2) pertains 
to Class 1; 29.5% (approximately 398.9 km2) to Class 2; 
17.5% (approximately 236.7 km2) to Class 3; and 0.11% 

(approximately 1.49 km2) to Class 4. The eastern and 
northern parts of the Eşen Basin exhibit very high (Class 
1) and high levels (Class 2) of tectonic activity. Especially 
NE-SW-striking faults (e.g. Dumanlıdağ, Saklıkent, 
Yakaköy faults) and NW-SE-striking faults of the Gökova-
Yeşilüzümlü Fault Zone exhibit very high and high tectonic 
activities (Figure 13).

5. Discussion
This study utilises a comprehensive approach, 
incorporating both field studies and geomorphic indices, 
to identify the relationship between active tectonics and 
geomorphology in the Eşen Basin. In contrast to previous 
studies that focused primarily on interpreting the local 
faults and kinematics of the basin, this research recognizes 
the importance of considering the detailed geological 
properties of the region. As a tool for understanding 
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Figure 12. The preference matrix, criteria weights (AFꞌ, T, Bs, HI, Vf, Smf, SL, and 
ksn), and Cr coefficient for classification of relative tectonic activity (Iat).

tectonic activity in the Eşen Basin, the study focuses on 
the use of geomorphic indices. The analytical hierarchy 
process (AHP) is used as a systematic framework for 
the understanding of the causes of observed tectonic 
phenomena in the region.

The Eşen Basin is located in the southwestern section 
of the Burdur-Fethiye Shear Zone, which is bounded by 
two distinct tectonic regimes: the compressional Western 
Taurides uplift to the east and the NW-SE extensional 
system to the west (Elitez et al., 2016; Elitez and Yaltırak, 
2016, 2023). GPS-based studies reveal a relative movement 
between these two regions, indicating the presence of 
a transtensional system that affects this area (Elitez et 
al., 2016). Therefore, the Eşen Basin is attributed as a 
transtensional basin dominantly characterised by N-S- 
and NE-SW-striking normal and oblique faults associated 
with the left-lateral shear. On the other hand, the NW-
SE-trending normal-oblique Gökova-Yeşilüzümlü Fault 
Zone, which is located in the northern side of the basin 
may be considered a contradiction (Figure 2). However, 
this zone develops parallel to a thrust (Figure 14) due to 
the uplift of the hanging-wall, which dips to north at an 
angle of approximately 8° (Hall et al., 2009). The Rhodes 
Basin is 4 km in depth and the footwall of the Gökova-
Yeşilüzümlü Fault Zone indicate a height of approximately 
2 km above the sea level. The recent morphological 
contrast is approximately 6 km. In this case, considering 
the dip of the thrust, which is 97 km away from the 
Gökova-Yeşilüzümlü Fault Zone, the zone should link up 
with the thrust 20 km below. When the earthquakes in 
the region are analysed, all of the earthquakes along the 
Gökova-Yeşilüzümlü Fault Zone are shallower than 17 km 
(Figure 8b) and also located above the thrust block. For 

example, the largest recorded earthquake is the earthquake 
of 18 June 1967 in the northern side of the Eşen Basin (Mw 
5.2; depth of 10 km; Figure 8b). The fault plane solutions 
of two earthquakes of 15 November and 11 July 2007 (Mw 
4.0 and 3.1, respectively) show a dominant slightly oblique 
extensional regime. South of the Eşen Basin, the recorded 
largest offshore earthquake is the earthquake of 14 January 
1969 (Mw 6.4). In addition to these earthquakes, the largest 
onshore and offshore earthquakes occurred around the 
Eşen Basin since 1925 are the earthquakes of 10 June 2012 
(Mw 6; south of Fethiye Bay); 16 August 1925 (Mw 5.6; 
Yeşilüzümlü); 7 January 1959 (Mw 5.3; Fethiye); and 11 
January 1959 (Mw 5.2; Fethiye). The offshore earthquakes 
are deep with mainly strike-slip and thrust components 
(Elitez et al., 2016; Elitez and Yaltırak, 2023). Shortly, the 
Eşen Basin, which is located on the thrusting block, is a 
NW-SE-extension area in accordance with the direction 
of the NE-SW compression regime formed in the region 
where the African Plate subducting beneath the Anatolian 
Microplate. The Eşen Basin is considered to be within 
the Burdur-Fethiye Shear Zone. This simply means that 
NW-SSE and E-W-striking normal faults and fault plane 
solutions indicating N-S-trending extension can only 
develop together within a shear zone. 

The application of geomorphic indices, including 
drainage basin asymmetry factor (AF), transverse 
topography symmetry factor (T), basin shape index (Bs), 
hypsometric curves and hypsometric integral (HI), valley-
floor width to valley height ratio (Vf), mountain front 
sinuosity index (Smf), stream length gradient index (SL), 
and normalized channel steepness index (ksn), has proven 
effective in characterizing the tectonic activity within 
the Eşen Basin. The distribution of these indices reveals 
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a heterogeneous pattern of tectonic influence across the 
basin, with distinct variations in asymmetry, transverse 
topography symmetry, basin shape, and hypsometric 
characteristics. The prevalence of strongly asymmetrical 
basins, elongated shapes, and young-stage hypsometric 
curves collectively suggests ongoing tectonic activity, 
particularly in the northern and eastern sectors.

The tectonic activity within the basin is not uniformly 
distributed. Various indices indicate that the northern 
and eastern parts exhibit a higher level of activity, 
corroborating the influence of NE-SW-striking faults 
such as Dumanlıdağ, Saklıkent, and Yakaköy. The NW-
SE-striking faults of the Gökova-Yeşilüzümlü Fault Zone 
also contribute to the observed tectonic features. The 
spatial variability underscores the complex interplay 
of different tectonic forces shaping the landscape. The 
relationship between tectonic activity and major faults 
is apparent in multiple indices. The anomalies in SL, ksn, 
and Smf indices highlight the influence of faults on the 
landscape. 

The identification of knickpoints along river profiles 
provides essential information about abrupt changes in 
slope and tectonic processes affecting the landscape. The 
distribution and variation in knickpoint heights indicate 
differential uplift and fault activity. The association of 
knickpoints with major faults and the correlation between 
drop heights and fault locations underscore the significance 
of tectonic control on landscape evolution. Knickpoints 
are occasionally observed in rivers that originate from 
high-altitude resources (Figure 11). The profiles of these 
rivers show convexities associated with significant drop 
heights. Knickpoints are generally located in the limestones 
with a strength level of R5 and are present in most of the 
longitudinal river profiles where major faults are present 
(Figures 10 and 11). However, some of the profiles show 
sharp knickpoints despite the absence of major faults or 
resistant rocks (e.g. river profile 5 in Figure 10). This is 
mainly due to the basement characteristics of the Eşen Basin. 
Lycian Nappes are composed of many nappes that occurred 
in different periods. As a result, the basement, which 

Figure 14. Digital elevation model and multibeam bathymetric map of the study area. White lines show the faults. White arrows show 
shear direction. Red arrows show the extension directions.
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consists mainly of ophiolitic melange and limestones, has 
a complex composition. This circumstance highlights the 
importance of considering the existence of old faults in 
the region.

Regarding the vertical-step knickpoints, there is 
no obvious variation in ksn values for both upstream 
and downstream segments; they are associated with 
differences in the resistivity of geological formations. 
In contrast, for slope-break knickpoints, the upstream 
and downstream segments exhibit different ksn values, 
indicating a tectonic influence (Wobus et al. 2006). ksn 
values vary within the same rock types in some drainage 
basins, highlighting the influence of tectonic processes 
(e.g. profiles 1, 3, 4, 5, 6, 8, 9, 10 in Figure 10). Previous 
studies have documented similar regions with high uplift 
rates (e.g. Kirby et al., 2003). Therefore, the observed 
changes in high ksn values can be interpreted as indicative 
of the presence of relatively high uplift in these drainage 
basins.

Analyses of AF’, T, Bs, HI, Vf, Smf, SL, and ksn was 
used to create an index map of the relative tectonic 
activity (Iat) by using the analytic hierarchy process 
(AHP). According to the results, most of the geomorphic 
indices suggest moderate to high tectonic activity (Figure 
13). The integration of AHP with the geomorphic indices 
facilitates a quantitative assessment of relative tectonic 
activity. The resulting classification into different tectonic 
classes provides a spatially explicit representation of 
varying activity levels across the basin. The dominance 
of Class 1 (very high tectonic activity) in the eastern and 
northern regions aligns with the observed patterns in 
geomorphic indices and knickpoint distribution.

The findings of this study contribute valuable 
information to the broader understanding of the 
tectonic framework in the region. The correlation 
between Smf values and earthquake locations, along 
with the compatibility between ksn values and major 
faults, strengthens the link between landscape dynamics 
and regional tectonics. The identification of areas with 
very high and high tectonic activity has implications 
for seismic hazard assessment and regional geological 
studies.

6. Conclusions
This study serves as a valuable contribution to the 
field of tectonic geomorphology, shedding light on the 
intricate tectonic dynamics within the Eşen Basin. The 
combination of geomorphic indices, knickpoints and 
AHP offers a robust methodology applicable to similar 
tectonically complex regions, providing a template for 
further investigations into landscape evolution and 
tectonic activity. Our field observations and geomorphic 
analyses lead to the following main conclusion.

• Both sides of the Eşen River are different in terms of 
morphological characteristics.

• The lithological variations in the basin are not the 
dominant factor controlling channel steepness. The 
northern and eastern sides of the Eşen Basin indicate 
intense tectonic activity. The knickpoints along the 
longitudinal river profiles generally reflect the response 
of the tectonic activity in the region. Topographic profiles 
indicate the uplift in the eastern side of the Eşen Basin. 
In addition, the elevation difference from north to south 
on the western side reflects an NW-SE-trending tectonic 
feature: the Gökova-Yeşilüzümlü Fault Zone. 

• The lowest Vf values, observed primarily along 
major faults, illustrate the presence of narrow and deep 
valleys, suggesting a high rate of incision associated with 
tectonic uplift.

• Almost all Smf values display low values representing 
high tectonic activity and are well-matched with the 
earthquake locations in the Eşen Basin.

• Abrupt changes in SL values are closely related to 
the major faults rather than lithological changes in both 
sides of the Eşen Basin and high SL index values confirm 
the relative uplift rates in the region.

• High SL and ksn values, indicative of tectonically 
active regions, are predominantly observed in the 
northern, eastern, and southwestern parts of the Eşen 
Basin.

• The various tilting directions of the drainage basins 
can be evaluated as the effect of the transtensional shear.

• Evaluation of the Iat results obtained by the AHP 
method suggest that relative tectonic activity in the Eşen 
Basin is generally high but dominantly very high in the 
northern and eastern sides. These results indicate better 
consistency with the tectonic situation of the region.

• The geomorphic indices demonstrating tectonic 
activity in the Eşen Basin are attributed to the progressive 
influence of the roll-back of the Hellenic Trench, the 
compressional region of the Western Taurides and the 
westward escape of Anatolia since the middle Miocene. 
These tectonic features control the drainage network 
pattern.

• In contrast to the studies that deny the presence of 
the Burdur-Fethiye Shear Zone (e.g. Kaymakçı et al., 2018; 
Tosun, et al., 2021), geomorphic indices and topographic 
features clearly show once again that morphological 
changes in the Eşen Basin are closely related to the 
heterogeneous tectonic activity of the Burdur-Fethiye 
Shear Zone, which has developed under the progressive 
influence of extension, compression and rotation.
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